The Performance Investigation of PLLA/PPAPH: The Influence of PPAPH as Heterogeneous Crystal Nuclei

Author:

Zhao Lisha,Lv Yang,Chen Jiale,Huang Hao,Zhou Xiaoqin,Cai Yanhua

Abstract

To overcome PLLA�s poor crystallization capability, using nucleating agent as crystallization improvement strategy was performed in this study. PPAPH as PLLA�s an organic nucleating agent was firstly synthesized, and then PLLA was blended with different PPAPH loading through melting blend method, the resulting influences of PPAPH on PLLA�s performances were investigated using the relevant testing instruments. Melt-crystallization revealed that PPAPH played important role in promoting PLLA�s crystallization through providing effective sites of heterogeneous nucleation, and effect of PPAPH loading on PLLA�s melt-crystallization was very poor, indicating that low PPAPH loading could cause PLLA to possess powerful crystallization capacity. In addition, the relative low final melting temperature was beneficial for PLLA/PPAPH�s crystallization. However, an increase of cooling rate during cooling stage weakened PLLA/PPAPH�s crystallization capacity. PLLA/PPAPH�s cold-crystallization suggested that PPAPH had an inhibition effect on cold-crystallization process to some extent. Melting behaviors depended on heating rate and previous crystallization including melt-crystallization at various cooling rates and isothermal crystallization at various crystallization temperatures. PPAPH enhanced PLLA�s fluidity, tensile modulus and tensile strength. Unfortunately, PLLA�s transmittance was seriously weakened as PPAPH loading increased, as well as the elongation at break continuously decreased.

Publisher

Revista de Chimie SRL

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3