Effect of Process Parameters on the Hardness of 3D-printed Thermoplastic Polyurethane that Includes Foaming Agent

Author:

Iacob Mariana Cristiana,Popescu Diana,Baciu Florin

Abstract

Recent progress in Material Extrusion-based Additive Manufacturing (MEX) has introduced active foaming agents in filaments composition, thus allowing for the tuning, by various process parameters, the hardness and the mechanical behavior of 3D-printed parts. In case of thermoplastic polyurethane (TPU) filaments, these advances significantly broaden the range of applications, particularly in the domains of comfort and orthotics (wrist-hand orthoses, insoles), offering the dual benefits of design flexibility inherent in MEX and the comfort of lightweight and customizable structures. However, the field is still in its early stages, with only a limited number of research efforts dedicated to characterizing these novel materials. In this context, this study is focused on determining the influence of printing temperature (190�C, 220�C, 240�C), infill density (25%, 35%, 45%) and infill pattern (honeycomb, gyroid) over the hardness of cylindrical specimens made of Colorfabb varioShore TPU. A comprehensive methodology of calibration is also presented as mandatory for obtaining good quality and accurate products by establishing correlations between flow rate and printing temperatures. The findings showed that the printing temperature is the most relevant factor impacting the hardness of varioShore TPU prints. At a printing temperature of 190�C, which corresponds to less foamed prints, the honeycomb infill yielded higher hardness compared to the gyroid infill, but the difference was not significant. Also, at 220�C and 240�C, the mean values of hardness remain relatively consistent, regardless of infill density and pattern.

Publisher

Revista de Chimie SRL

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3