Synthesis and Thermal Treatment of Hydroxyapatite Doped with Magnesium, Zinc and Silicon

Author:

Goga Firuta,Forizs Edit,Avram Alexandra,Rotaru Adela,Lucian Anamaria,Petean Ioan,Mocanu Aurora,Cotisel Maria Tomoaia

Abstract

Pure nano-crystalline hydroxyapatite (Hap) and Hap doped with magnesium, zinc and silicon, namely Hap-0.25wt%Mg: Hap01, Hap-0.25wt%Mg-0.47wt%Si: Hap02, Hap-1.50wt%Mg-0.47wt%Si: Hap03, Hap-0.67wt%Mg-0.2wt%Zn-0.13wt%Si: Hap04, were synthesized using aqueous precipitation method. The pure and doped Hap were calcined individually at 400, 650 and 850 �C for 2h, and investigated by Brunauer-Emmett-Teller (BET) specific surface area and porosity measurements, as well as by X-ray powder diffraction (XRD). The morphology and particle size of nano-crystalline powders were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal stability of the obtained nanoceramics from 30�C to 1000�C and the effect of calcination temperatures (400, 650 and 850 �C) on their composition and structure were also determined by using TG, DTG, TGA and DTA techniques coupled with SEM-EDX. Results analysis shows a high thermal stability (up to 1000 �C) of these nanomaterials, including the triple-substituted Hap with Mg, Zn and Si (Hap04). Simultaneous incorporation of Mg, Zn and Si into Hap lattice represents a novelty and promotes a new generation of synthetic porous nanoceramics with unique Hap structure, and high thermal stability. Due to their chemical composition and structure rather similar to those characteristic for the inorganic component of bone, these nanoceramics can have multiple applications in biomedicine, as bone substitutes, for metal coatings and in drug delivery systems.

Publisher

Revista de Chimie SRL

Subject

General Chemistry,Materials Science (miscellaneous),Materials Chemistry,Process Chemistry and Technology,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Pharmacology, Toxicology and Pharmaceutics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the Complexity of Red Blood Cells: Insights into Structure, Properties and Functions;Annals of the Academy of Romanian Scientists Series on Biological Sciences;2023

2. Review on the Biocompatibility and Bioactivity of Forsterite: In Vitro and in Vivo studies;Annals of the Academy of Romanian Scientists Series on Biological Sciences;2022

3. Silymarin Based Complexes – a mini review;Annals of the Academy of Romanian Scientists Series on Biological Sciences;2022

4. Biomimetic and Antibacterial Composite for Orthopedic Implants;Annals of the Academy of Romanian Scientists Series on Biological Sciences;2022

5. INTERACTION OF BIOACTIVE COMPOUNDS WITH CERAMIC MATERIALS – A REVIEW;Annals of the Academy of Romanian Scientists Series on Physics and Chemistry;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3