Physical Properties of Biodegradable Poly(L-lactide) Induced by N, N -Bis(Benzoyl) 1, 3-Cyclohexanedicarboxylic Acid Dihydrazide as Crystallinity Additive
-
Published:2021-07-05
Issue:2
Volume:58
Page:48-59
-
ISSN:0025-5289
-
Container-title:Materiale Plastice
-
language:en
-
Short-container-title:Mater. Plast.
Author:
Zhao Li-Sha,Deng Ting,Qiao Jun,Cai Yan-Hua
Abstract
This work is aimed at synthesizing an organic compound N, N -bis(benzoyl) 1,3-cyclohexane-dicarboxylic acid dihydrazide (CABH) to focus on its effect on the non-isothermal crystallization of poly(L-lactide) (PLLA), meanwhile the melting behavior, thermal decomposition process and optical property of PLLA/CABH samples in different CABH concentrations were also investigated. It was found that CABH acted as efficient heterogeneous nucleating agent for inducing PLLA�s crystallization through comparative analysis of melt-crystallization process of the virgin PLLA with PLLA/CABH samples, and a high amount of CABH played a much more significant role in promoting PLLA�s crystallization. Additionally, the melt-crystallization processes also showed that both the cooling rate and the final melting temperature affected the crystallization behavior of PLLA, an increase of cooling rate could weaken the crystallization ability of PLLA/CABH samples, and the final melting temperature of 180�C made PLLA/CABH exhibit the best crystallization ability. For the cold-crystallization process, the cold-crystallization peak became flatter and shifted toward the lower temperature with increasing of CABH concentration, but an increase of heating rate could prevent the cold-crystallization peak from moving to low temperature because of the thermal inertia. The melting behaviors of PLLA/CABH depended on the previous crystallization and heating rate in heating, and the difference in melting behavior of PLLA/CABH samples effectively reflected the nucleation role of CABH, as well as the double melting peaks behavior of PLLA/CABH was thought to due to the melting-recrystallization. The introduction of CABH led to a drop in light transmittance, moreover, this negative effect were more obvious with an increase of CABH loading. In contrast, the fluidity of PLLA was significantly enhanced due to the existence of CABH.
Publisher
Revista de Chimie SRL
Subject
Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry