The 3D/4D Printing Defects and Their Influence on the Functional Behavior of the Achieved Items from Renewable Compounds. (I)

Author:

Dimonie Doina,Dragomir Nicoleta,Trusca Roxana,Jecu Luiza,Constantin Mariana,Ghiurea Marius

Abstract

The paper is part of a series in which the influence of the manufacturing defects on the functional behavior in biodegradation medium of some items obtained, both by 3D printing and by classical procedure (pressing), from an originaly renwable matrials based on polylatic acid will be presented. The first results regarding the correlation of the defects appeared at manufacturing into plates with the biodegradation behavior in an Aspergillus Niger(A.niger) medium, studied by SEM microscopy, are presented. These results demonstrated that the development of the A. Niger microorganism is related manly to the defects appeared at the melt processing of renewable polymeric material into finished product. A notable role in controlling the appearance of the manufacturing defects belongs both to the melt rheological properties which are responsible for the continuous or discontinuous flow and to the technical performance of the used equipement, 3D printer or classic hydraulic press. If the polymeric material melt has too high viscosity than the continuous flow is not possible and so the overlapped melt fronts are created which generate the voids formation, sometimes joined by small nano and/or micrometric channels. The rheological properties of the melts depend both on the material formulation and the seleted melt processing conditions.

Publisher

Revista de Chimie SRL

Subject

Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3