Comparative Study on the Frequency and Wear of Thermoplastic Polymeric Materials Based on PTFE

Author:

Petre Ivona Camelia,Stoian Elena Valentina,Enescu Maria Cristiana,Rusanescu Carmen Otilia

Abstract

The widespread use of thermoplastic polymeric materials in various industrial fields has shown considerable interest in understanding the frictional and wear behavior. Among these polymers, polytetrafluoroethylene, also called PTFE, is a high-performance plastic that offers high chemical and thermal resistance and low friction. Additives such as fiberglass, carbon and graphite fillers are added to PTFE to significantly increase thermal conductivity, stiffness and self-lubricating properties. The materials subjected to the experimental analysis were pure PTFE, PTFE + 15% fiberglass, PTFE + carbon-graphite which slipped, under conditions of dry friction, on a sample of non-alloy steel construction SR EN 10025 from 1994. The tests were performed on a pin-on-disc tribometer. The effect of loading and sliding speed on the tribological properties of the polymer / steel combination under dry slip conditions was investigated and the specific wear rate for the experimental conditions was evaluated. The tests were performed at loads of the pin of Fn1=1N, Fn2=3N, Fn3=5N and Fn4=10N and sliding speeds of 1=1m/s, 2=3m/s. The results obtained indicated that the coefficient of friction decreases with increasing load. The wear rate for the analyzed materials was between 10-13...10-15 m2/N, the fiberglass reinforced PTFE material having the lowest wear rate. The present paper, through a comparative analysis of the friction and wear behavior, highlights the effects that the ingredients introduced in the basic material have, under the action of the exploitation factors (loading, sliding speed).

Publisher

Revista de Chimie SRL

Subject

Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3