Comparison between Organic Working Fluids in order to Improve Waste Heat Recovery from Internal Combustion Engines by means of Rankine Cycle Systems

Author:

Racovitza Alexandru,Pop Horatiu,Apostol Valentin,Prisecaru Tudor,Taban Daniel

Abstract

The present works deals with waste heat recovery from internal combustion engines using Rankine cycle systems where working fluid are organic liquids (ORC). The first part of the paper presents the ORC technology as one of the most suitable procedure for waste heat recovery from exhaust gas of internal combustion engine (ICE). The particular engine considered in the present work is a turbocharged compression ignition engine mounted on an experimental setup. The working fluids for ORC system are: isobutene, propane, RE245fa2, RE245cb2, R245fa, R236fa, R365mfc, R1233zd(E), R1234yf and R1234ze(Z). Experimental data derived from the experimental setup has been used for 40%, 55% and 70% engine load. This papers focusses on superheating increment, on thermal efficiency and on net power output, obtained with each working fluids in Rankine cycle. Results point out the superheating increment that gives the highest thermal efficiency for each working fluid. The highest thermal efficiency is achieved in case of using R1233zd(E) as working fluid. In case of using R1233zd(E) as working fluid at 40 % load of the engine, the output power of the Rankine cycle is 3.6 kW representing 6.2 %, from the rated power at this load; at 55% load it is 5.7 kW representing 6.7 % the rated power and at 70% it is 6.7 kW representing 6.5 % from the rated power. Future perspectives are given.

Publisher

Revista de Chimie SRL

Subject

General Chemistry,Materials Science (miscellaneous),Materials Chemistry,Process Chemistry and Technology,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Pharmacology, Toxicology and Pharmaceutics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3