Rainfall Prediction in Blora Regency Using Mamdani's Fuzzy Inference System

Author:

Damayanti Dela Rista,Wicaksono Suntoro,Hakim M. Faris Al,Jumanto Jumanto,Subhan Subhan,Ifriza Yahya Nur

Abstract

In the case study of weather prediction, there are several tests that have been carried out by several figures using the fuzzy method, such as the Tsukamoto fuzzy, Adaptive Neuro Fuzzy Inference System (ANFIS), Time Series, and Sugeno. And each method has its own advantages and disadvantages. For example, the Tsukamoto fuzzy has a weakness, this method does not follow the rules strictly, the composition of the rules where the output is always crisp even though the input is fuzzy, ANFIS has the disadvantage of requiring a large amount of data. which is used as a reference for calculating data patterns and the number of intervals when calculating data patterns and Sugeno has the disadvantage of having less stable accuracy results even though some tests have been able to get fairly accurate results. In research on the implementation of the Mamdani fuzzy inference system method using the climatological dataset of Blora Regency to predict rainfall, it can be concluded as follows: (1) The fuzzy logic of the Mamdani method can be used to predict the level of rainfall in the city of Blora by taking into account the factors that affect the weather, including temperature, wind speed, humidity, duration of irradiation and rainfall. (2) Fuzzy logic for prediction with uncertain input values is able to produce crisp output because fuzzy logic has tolerance for inaccurate data. (3) The results of the accuracy of calculations using the Mamdani fuzzy inference system method to predict rainfall in Blora Regency are 66%.

Publisher

Surya Hijau Manfaat

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Logic Approach to Predicting Rainfall Patterns;2023 IEEE 21st Student Conference on Research and Development (SCOReD);2023-12-13

2. Prediction of Rainfall Using Seasonal Auto Regressive Integrated Moving Average and Transductive Long Short-Term Model;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

3. New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning;Intelligent Systems with Applications;2023-05

4. Forecasting of rain in chennai using fuzzy inference system;3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS (e-ICMTA-2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3