Research on the Application of Deep Learning in Medical Image Segmentation and 3D Reconstruction

Author:

Zi Yun,Wang Qi,Gao Zijun,Cheng Xiaohan,Mei Taiyuan

Abstract

 Medical image segmentation (MIS) and 3D reconstruction are crucial research directions in the field of medical imaging, which is of great significance for disease diagnosis, treatment planning and surgical navigation. In recent years, with the rapid development of Deep Learning (DL) technology, DL has made remarkable progress in the field of medical image processing and has become one of the important methods of MIS and 3D reconstruction. In this paper, the application of DL technologies in MIS and 3D reconstruction is systematically studied and discussed. Firstly, the paper introduces the basic concepts and technical challenges of MIS and 3D reconstruction, including image quality, noise interference and edge detection. Secondly, the paper introduces the data acquisition process in detail, including the medical image data set and data preprocessing method. Then, the paper puts forward the DL model framework based on self-attention mechanism, as well as the loss function and optimizer used in the training process. Then, the model is verified by experiments, and the performance of different models in MIS and 3D reconstruction is analyzed. Finally, the experimental results are comprehensively analyzed, and the application prospect and future development direction of DL in MIS and 3D reconstruction are discussed. The research results of this paper provide important theoretical and practical guidance for improving medical image processing technology and promoting the development and clinical application of medical imaging.

Publisher

Darcy & Roy Press Co. Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning in medicine: advancing healthcare with intelligent solutions and the future of holography imaging in early diagnosis;Multimedia Tools and Applications;2024-07-05

2. Advanced Multimodal Deep Learning Architecture for Image-Text Matching;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

3. Enhanced Detection Classification via Clustering SVM for Various Robot Collaboration Task;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

4. Adaptive speed planning for Unmanned Vehicle Based on Deep Reinforcement Learning;2024 5th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3