Study on Characteristics of Two Phase Flow Field in Grinding Zone of Large Spiral Angle Groove Wheel

Author:

Liu Shibo,Jiang Jingliang,Chen Xiaolin

Abstract

 Aiming at the high specific removal energy and heat generation rate in grinding process, and the low heat transfer efficiency in grinding arc zone of ordinary grinding wheel, the problems of local high temperature and grinding burn are easy to occur. In this paper, the plane grinding of grooving wheel with large spiral Angle is taken as the research object, and the numerical analysis model of gas-liquid two-phase flow field in wedge zone and grinding arc zone is established. The enhancement mechanism of heat transfer performance in grinding arc of large spiral Angle groove wheel was investigated. The results show that the flow of grinding fluid into the grinding arc will be hindered by the airflow around the grinding wheel, resulting in backflow and side leakage. Compared with ordinary grinding wheels without grooves, the backflow and side drainage in grinding zone of big spiral Angle grooves grinding wheels are significantly reduced, and a large amount of grinding fluid is transported in the heat exchange channel. The spiral groove has a good conduction effect on the grinding fluid, and the grinding fluid is easier to enter the grinding zone, thus significantly improving the heat transfer performance of the grinding zone and effectively reducing the grinding temperature during the grinding process.

Publisher

Darcy & Roy Press Co. Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Grinding Wheel Design with a 3D Internal Cooling Structure System;Journal of Manufacturing and Materials Processing;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3