Hierarchical federated learning with mobile edge computing in the Internet of Vehicles

Author:

Zhang Senwei,Li Fei,Zhang Yi

Abstract

Federated Learning is a distributed machine learning framework, which can be used in the Internet of Vehicles to train deep learning models without directly accessing the original data of mobile edge vehicle nodes. ECS can access massive data, but it has the characteristics of high latency and high communication overhead. However, mobile edge computing (MEC) platform can directly and efficiently communicate with mobile edge vehicle nodes. Combining the advantages of the two, a three-layer federated learning system of edge car network edge server cloud server is used. This system is supported by the HierFedProx algorithm and aggregates the model output of the edge car to the edge server to improve the model learning efficiency and reduce the global communication frequency. The experimental results show that the system can reduce the training time and improve the accuracy of the model compared with the federated learning without introducing the edge server.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3