Insulator defect detection algorithm based on improved YOLOv5

Author:

Lian Xin,Wang Dewen

Abstract

Aiming at the problems such as small target scale, complex background, difficult detection, false detection and leakage detection of aerial insulators in transmission lines, this paper proposes an insulator defect detection algorithm based on improved YOLOv5. Firstly, CBAM attention module is added to the backbone network of YOLOv5 to improve the feature extraction capability of insulator pictures. Secondly, in the feature extraction part, PANet structure is replaced by BiFPN structure to make full use of the underlying feature information. Finally, the improved K-means algorithm is used to determine the prior frame and improve the defect detection accuracy of the insulator. Experimental results show that this method can improve the identification accuracy of insulator defect detection in transmission lines.

Publisher

Darcy & Roy Press Co. Ltd.

Reference15 articles.

1. Gao Youhua, Wang Caiyun, Liu Xiaoming, et al. Analysis of electric field of basin-type insulator existing metal particles and its influence on surface flashover [J]. New Technology of Electrical Engineering,2015,34(8) :56-61.

2. Huang Ruiying, HUANG Daochun, Zhou Jun, et al. Research on bird damage risk region of 400kV DC transmission line [J]. New Technology of Electrical Engineering, 2017, 36(2): 68-73.

3. Chen Wenhao, Yao Lina, Li Fengzhe. Insulator Defect Detection and Location in UAV Power Grid Inspection [J]. Computer Applications, 2019,39(S1); 210-214.

4. Tan Jicheng. Automatic Insulator Detection for Power Line Using Aerial Images Powered by Convolutional Neural Networks[J]. Journal of Physics: Conference Series, 2021, 1748(4).

5. Fan P, Shen H M, Zhao C, Wei Z, Yao J G. ZhouZ Q. FuR, Hu Q. Defect Identification Detection Research for Insulator of Transmission Lines Based on Deep Learning[J]. Journal of Physics: ConferenceSeries,2021,1828(1).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3