Review of Research on Fault Diagnosis of Rolling Bearings Based on Deep Learning

Author:

Duan Caidie,Zhang Mingchuan

Abstract

Deep learning has powerful capabilities in deep feature extraction and expression, and has been successfully applied in equipment fault diagnosis, overcoming the shortcomings of traditional diagnostic methods that rely on expert experience. It can save costs while improving diagnostic accuracy. This article briefly introduces three commonly used neural networks: Deep Belief Networks (DBN), Convolutional Neural Networks (CNN), and Long Short-Term Memory Networks (LSTM), and points out the problems in rolling bearing diagnosis and analyzes future development directions.

Publisher

Darcy & Roy Press Co. Ltd.

Reference27 articles.

1. LeCun Yann, Bengio Y, Hinton G. Deep learning[J]. nature, Vol.521(2015),p. 436-444.

2. Lopes Noel, Ribeiro Bernardete. Deep belief networks (DBNs)[J]. Machine Learning for Adaptive Many-Core Machines-A Practical Approach, Vol.7 (2015), p. 155-186.

3. Liu Dongdong. Application of Deep Learning in Bearing Fault Diagnosis[J]. Science and technology wind. Vol.2022No9, p. 91-93.

4. Tao Jie, Liu Yilun, Yang Dalian, et al. Fault diagnosis of rolling bearing using deep belief networks[C]. Energy and Environment Engineering, Proceedings of the 2015 International Symposium on Material, 2015.

5. Wang Songjin, Peng Zanxin, Yin Han. Fault diagnosis of gearbox bearing based on multi-sensor signal processing[J]. Modular Machine Tool & Automatic Manufacturing Technique, Vol.2020No11, p. 5-10.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3