Study On Electrolyte of Low Temperature Sodium-Ion Battery

Author:

Chang Bohao

Abstract

With the rapid development of electronic devices, energy storage systems with excellent performance are required. To be used in cold climates and high-altitude areas, it is required that the battery should work stably and operate safely even when the temperature drops below freezing point. Sodium-ion batteries arouse great attention, because of their high safety, good capacity in both high and low-temperature environments, along with their abundant sodium resources in the earth's crust. But for practical applications, the kinetics of sodium-ion batteries become slow when working at low temperatures. The performance deteriorates with the temperature decreases. Therefore, researchers have carried out a lot of research to overcome these problems in the low-temperature environment. For example, the energy storage performance of sodium-ion batteries can be improved by optimizing the positive and negative electrodes, separators, and electrolytes. Among them, optimizing the electrolyte is critical to improving the energy storage performance of sodium-ion batteries. Because the electrolyte is an important part, which is in contact with each part of the battery as a medium, which is mainly composed of solvents, electrolyte salts, and additives. During the charge/discharge processes of the battery, the electrolyte plays a role to act as an ionic conductor to transfer Na + between the positive and negative electrodes and link then together. Additionally, the electrolyte will also directly participate in the reaction on the electrode surface and form SEI film. Thus, it is one of the most economical and effective means to enhance the low-temperature performance by modifying the electrolyte. This paper, summarizing the reports on the electrolyte of low-temperature sodium-ion batteries at home and abroad, sorting out and analyzing the solid, liquid, and gel electrolytes, clarifies how to making the electrochemical performance of sodium-ion batteries better by optimizing electrolytes.

Publisher

Darcy & Roy Press Co. Ltd.

Reference18 articles.

1. Yuan Ziwei, Lin Chuyuan, Yuan Ziyan, etc.. Research Progress on Low Temperature Performance of Zinc Ion Batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 278-298.

2. Mei Xiaoxian, Shi Zhiqiang. Research Progress on Low-Temperature of Sodium Ion Batteries [J]. Shandong Chemical Industry, 2022, 51(20): 93-96.

3. Wang Yixiao, Xie Leqiong, Sheng Li, etc. Research progress on Low Temperature of Lithium Ion Batteries [J]. Battery Industry, 2022, 26(5) : 251-262.

4. Song Liu Bin, Wang Yixuan, Kuang Yinjie, etc.. Development and Prospect of Key Materials and Technologies in Sodium Ion Batteries [J]. Journal of Chemical Industry, 2022, 73(11) : 4814-4825.

5. Dang Rongbin, Lu Yaxiang, Rong Xiaohui, etc.. Progress in Research and Engineering Exploration of Key Materials for Sodium Ion Batteries [J]. Science Bulletin, 2022, 67(30): 19.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3