Research on Propellant Performance Prediction Based on Neural Network or Algorithm Optimization

Author:

Tang Linjing,Jiao Xuying,Feng Wei,Yan Rui,Zhang Yuanbo

Abstract

In order to analyze the four main properties of propellant, the performance prediction model based on BP neural network is established with LM algorithm and CG algorithm as the core algorithm, and the simulation calculation is carried out with the actual production process data and the performance of the model is analyzed. The results show that the mass prediction model based on BP neural network algorithm can quickly predict the properties of propellant. Compared with the prediction model based on CG algorithm, the prediction model based on LM algorithm is more suitable for propellant performance prediction and analysis.

Publisher

Darcy & Roy Press Co. Ltd.

Reference18 articles.

1. ZHU Ling-li, ZHANG Tao, QIAO Bin. Research on Quality Control Model of Lime Rotary Kiln Based on Neural Network [J]. Machinery Design & Manufacture, 2015, (5): 268-272.

2. HUANG Miao-you, LIU Xian-feng, WU Feng-yun. Application of MATLAB Artificial Neural Network in Forecast of EPDM Vulcanizates' Properties [J]. COMPUTER SIMULATION, 2004, 21(4): 117-120.

3. YANG Fan-wen, ZHAO Yao-ming. Research method of Artificial Neural Network for material property prediction and formulation optimization [J]. Synthetic Aging and Application, 2001, 5(1): 15-19.

4. MA Cenrui, ZHANG Chengtao, LIU Li. The Study on Mechanical Capability Model of Solid Rocket Propellant Based on Neural Net [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(3): 154-156.

5. ZHENG Dang-cheng, DU Run-sheng, WU Bo. Study on performance prediction of solid propellant based on BP neural network [J]. AEROSPACE MANUFACTURING TECHNOLOGY, 2006, 2(1): 21-24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3