Improved GSA Method Based on Deep Convolutional Features

Author:

Wu Shuai

Abstract

With the rapid development of remote sensing platforms, sensors and other technologies, remote sensing, as an important technical means of collecting information on land cover and its changes, plays an important role in land cover classification and dynamic monitoring. Due to the limitation of the imaging mechanism of in-orbit optical remote sensing sensors, it is difficult for to take into account both spatial resolution and spectral resolution. There is a need for complementary use of different sensor images and to improve the accuracy of feature interpretation. In this study, based on the Gram-Schmidt Adaptive (GSA) and its classical extension, a neural network-based multi-source remote sensing image fusion method is proposed by combining the U-Net coding and decoding structure with the Non-Local spatial attention mechanism. Using two sets of experimental datasets, three kinds of fusion evaluation metrics without reference and three kinds of fusion evaluation metrics with reference, the improved method and the existing fusion method are compared.

Publisher

Darcy & Roy Press Co. Ltd.

Reference19 articles.

1. ZHANG Bing, GAO Lianru, LI Jiaxin, et al. Progress and prospect of super-resolution fusion research on high/multispectral remote sensing images[J]. Journal of Surveying and Mapping, 2023, 52(7):1074-1089.

2. Zhang Y , Ji Q . Active and dynamic information fusion for facial expression understanding from image sequences[J]. IEEE Trans Pattern Anal Mach Intell, 2005, 27(5):699-714.

3. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Frontier progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5): 689-707.

4. Nencini F , Garzelli A , Baronti S , et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2):143-156.

5. Aiazzi B , Alparone L , Baronti S ,et al. 25 years of pansharpening: a critical review and new developments[M]. 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3