Regression-based Analysis of Ozone Layer via Machine Learning Models

Author:

Dong Yiran

Abstract

Ozone protects the livings on the earth from ultraviolet radiation. The emission of ozone depleting substance causes the Antarctic ozone hole and reduces the ultraviolet radiation absorption rate by ozone layer. Researchers find that ozone depleting substances (ODS) accounts for ozone concentration between 9 km and 25km, by chemical-climate models and ozone concentration will increase by 15% until 2050. In this work, we used six major ODS consumption worldwide and mean stratospheric ozone concentration each year. Seven regression models are implemented to make prediction and k-fold cross validation is used for avoiding overfitting. Root mean squared error (RMSE), and standard deviation are two performance metrics of regression models. The results indicate that the prediction from support vector regression achieved the lowest RMSE. Random forester and k-nearest neighbor are also appropriate for make prediction. We also concluded that linear, polynomial, ridge, and lasso regression methods are hardly to fit the data in this application.

Publisher

Darcy & Roy Press Co. Ltd.

Reference13 articles.

1. Cicerone, R. J. (1987). Changes in stratospheric ozone. Science, 237(4810), 35-42.

2. Stolarski, R. S., & Cicerone, R. J. (1974). Stratospheric chlorine: a possible sink.

3. World Meteorological Organization (1999), Scientific assessment of ozone depletion: 1998, 44 pp., Geneva, Switzerland.

4. World Meteorological Organization (2003), Scientific assessment of ozone depletion: 2002, Global Ozone Res. Monit. Proj., Rep. 47, Geneva, Switzerland.

5. Hannah Ritchie and Max Roser (2018) - "Ozone Layer". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/ozone-layer'.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3