Handwritten Text Classification Based on Convolutional Neural Network

Author:

Chen Aldyn

Abstract

The convolutional neural network (CNN) is a popular and highly effective deep learning technique for image classification. As the popularity of CNNs grew, the model has become popular in several machine learning problems. This paper utilizes a CNN model and the popular LeNet-5 transfer learned model to classify texts after the words are preprocessed and segmented from an image. The EMNIST database is used to train the models. The paper achieves an 89.36% validation accuracy on the EMNIST Balanced dataset and an 86.64% on the EMNIST By_Class dataset for the CNN model of four convolutional layers and one dense layer. Similarly, the LeNet-5 model obtained a validation accuracy of 85.88% on the EMNIST Balanced dataset and 85.01% accuracy on the EMNIST By_Class dataset. However, despite a higher accuracy in the EMNIST Balanced dataset, the EMNIST By_Class dataset achieves better results in real-world handwritten texts.

Publisher

Darcy & Roy Press Co. Ltd.

Reference15 articles.

1. Preetha, S., Afrid, I. M., &Nishchay, S. K. (2020). Machine Learning for Handwriting Recognition. International Journal of Computer (IJC), 38(1), 93-101.

2. Ahlawat, S., Choudhary, A., Nayyar, A., Singh, S., & Yoon, B. (2020). Improved handwritten digit recognition using convolutional neural networks (CNN). Sensors, 20(12), 3344.

3. Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine, 29(6), 141-142.

4. Saleem, A. S., Helan, R. R. H., Abirami, G., Vivekanandan, S. J., Asha, S., &Nithuja, B. M. (2022). Handwritten Recognition of Character and Number Using Convolutional Neural Network and Support Vector Machine. International Journal of Modern Developments in Engineering and Science, 1(6), 50-53.

5. Wang, P., Fan, E., & Wang, P. (2021). Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141, 61-67.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3