E-mail Spam Classification using KNN and Naive Bayes

Author:

Ouyang Qianhe,Tian Jiahe,Wei Jiale

Abstract

E-mail spam filtering is becoming a critical and concerned issue in network security recently, and multiple machine learning techniques have been applied to tackle such sort of classification problem. With the emerging of machine learning framework, most of the tasks has been changed via the effective machine learning algorithms with satisfying performance and high speed. However, the underlying performances of different algorithms under certain given circumstances still lack of an intuitive demonstration. Hence, this study mainly focuses on the performance of two widely-used algorithms (KNN and Naive Bayes) from metrics including accuracy and running time, comparing the unique advantage of each algorithm when classifying emails. The paper uses thousands of spam data to feed two algorithms and analyzes both results respectively, indicating that KNN classifier performs better when determining the spam messages while the opposite is true for the Naive Bayes classifier. Thus, designers can pick an appropriate algorithm easily when dealing with spam filter issues under a given dataset whose features and properties are known.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3