Instrument Classification Using Different Machine Learning and Deep Learning Methods

Author:

Su Yuqing

Abstract

Instruments are categorized into the 5 groups in the Sachs-Hornbostel system: idiophones, membranophones, aerophones, chordophones, and electrophones. It might be easy to tell the Sachs-Hornbostel group that an instrument belongs to. However, distinguishing single instrument sound can be hard in monophonic or polyphonic music pieces and it is an important subject for musicians. Using computer science models can help musicians to analyze songs easily and fasten the speed of finding the instrument that are wanted by music producers or composers. This work aims to compare different models on particular instruments (monophonic sound) recognition which is an important problem in the field of music information retrieval. Jupyter Notebook is included for easy reproducibility. Among the six models chosen in this research: k-nearest neighbors(kNN), Support Vector Machines(SVM), Gaussian Mixture Modeling(GMM), Artificial Neural Networks(ANN), Convolutional Neural Networks(CNN) and Recurrent Neural Networks(RNN), CNN is the most accurate model and SVM is the fastest model while CNN has the prospect of being improved because it can be adjusted manually.

Publisher

Darcy & Roy Press Co. Ltd.

Reference13 articles.

1. Marques, J., & Moreno, P. J. (1999). A study of musical instrument classification using gaussian mixture models and support vector machines. Cambridge Research Laboratory Technical Report Series CRL, 4, 143.

2. Solanki, A., & Pandey, S. (2019). Music instrument recognition using deep convolutional neural networks. International Journal of Information Technology, 1-10.

3. Philharmonia Limited Registered Charity. 2022. Sound samples [dataset]. https://philharmonia.co.uk/resources/sound-samples/

4. Bernier, J. J., & Stafford, R. E. (1972). The relationship of musical instrument preference to timbre discrimination. Journal of Research in Music Education, 20(2), 283-285.

5. Solanki, A., & Pandey, S. (2019). Music instrument recognition using deep convolutional neural networks. International Journal of Information Technology, 1-10.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Musical Instruments’ Sound using kNN and CNN;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3