Virus-like Particles in Vaccine Development for Infectious Diseases

Author:

Huang Jiaheng

Abstract

Throughout the last two decades, virus-like particles (VLP), a nano scale multi-protein structure, have been vigorously studied and became a crucial and unique tool for clinical use. Due to VLPs’ structural resemblance of viable virus particles, highly modifiable nature, and lack of viral genome, they are excellent candidates for vaccine development for infectious diseases, offering many advantages over traditional vaccine development methods. Capable of eliciting both potent humoral and cell-mediated immunity, VLPs become one of the best nano-vectors for vaccines for infectious diseases. In addition, VLPs’ flexibility in composition and expression systems also contribute to their versatility as a vaccine platform. Various VLP-based vaccines are commercially available, including Cervarix®, Gardasil®, and Gardasil9® for Human Papillomavirus (HPV), Heptavax-B and Sci-B-Vac™ for Hepatitis B Virus, and COVIFENZ® for SARS-CoV-2. In this review, classification of VLPs, different expression systems, as well their application in vaccine development for several infectious diseases will be discussed.

Publisher

Darcy & Roy Press Co. Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recombinant vaccines: Current updates and future prospects;Asian Pacific Journal of Tropical Medicine;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3