Study on Ceramic Sintering Process Based on Random Forest

Author:

He Runhui,Sheng Yuna,Zhang Jianxin,Xu Zihan,Li Chengrui,Wang Liya

Abstract

While the manufacturing process of ceramics is complex and each link is important to the ceramic, we focus on the sintering process of ceramics and construct models and algorithms to investigate the temperature of the ceramic sintering process in order to improve the yield of the ceramic sinter. We make full use of the ceramic sintering process node temperature and ceramic product problem data, adopt factor analysis for data dimensionality reduction, and use principal component analysis to extract factors to improve efficiency for subsequent optimisation. The random forest algorithm of integrated machine learning is used to investigate the effect of different nodal temperature rates on the ceramic product, and a decision tree is derived to identify the more influential temperature rates. These obtained important temperature factors affecting ceramic sintering can be used as a reference for the ceramic sintering process, thus achieving a study of the temperature of the ceramic sintering process.

Publisher

Darcy & Roy Press Co. Ltd.

Reference8 articles.

1. Zhang Changlu. Factor analysis-based dimensionality reduction of coal quality indicators and its visualization application[J]. Coal Technology,2017,36(01):310-313.

2. HU Xinxiang,ZHAO Xia,ZHANG Qian,LI Yinglan,KONG Xiangsheng,MA Yuting. Weight analysis of factors influencing agricultural yield based on random forest algorithm[J]. Gansu Science and Technology,2020,36(09):16-19+40.

3. Wang Fubin,Wang Rui,Wu Chen. Short-term prediction of sintering state based on improved random forest algorithm[J]. Advances in Lasers and Optoelectronics,2022,59(18):382-388.

4. LI Jianming,WANG Su,YUAN Shenghua. Numerical simulation and simulation of the temperature field of ceramic sintering process [J]. China Ceramics, 2003 (03): 14-16.DOI:10.16521.

5. Zhang Xiaofeng,Lin Bin,Chen Shihuan. Temperature field analysis of ceramic sintering process[J]. Rare Metal Materials and Engineering,2008,37(S1):314-318.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3