Application of Artificial Intelligence Technology in the Optimal Deployment of Wireless Sensor Network Nodes

Author:

Lei Yichen

Abstract

WSN (Wireless Sensor Network) is a network composed of a large number of sensor nodes self-organizing through wireless communication technology. Nodes are prone to failures due to environmental impact and energy depletion, and environmental interference and node failures can easily cause changes in the network topology. This article conducts research on the application of AI (Artificial Intelligence) technology in the optimal deployment of WSN nodes. Using AI technology to optimize the deployment of hybrid WSN mobile nodes, ensuring that the node density of each sub target area reaches its expected node density to ensure effective coverage of the entire target monitoring area. Given the target area range, the number and position of sensor nodes are determined through AI technology, which is the network layout for a given target area. Effectively reducing the data flow of the entire network. Due to the limited energy of sensor nodes, minimizing energy consumption and maximizing network lifespan are the main goals of designing WSN. Deployment strategies must optimize the deployment strategies of sensor nodes, intermediate nodes, and base stations to ensure coverage, connectivity, and robustness.

Publisher

Darcy & Roy Press Co. Ltd.

Reference10 articles.

1. Sundar R, Ahamed J A S, Suganya. V.INGREDIENTS OF WIRELESS SENSOR NETWORK TECHNIQUE USING ARTIFICIAL INTELLIGENCE AND VIRTUALIZATION[J]. TecnoLógicas, 2019, 11(2):8-12.

2. Celis J M, Escobar C, Sepulveda S,et al. Design of a Wireless Sensor Network for Optimal Deployment of Sensor Nodes in a Cocoa Crop[J].TecnoLógicas, 2020, 10(9):31-38.

3. Zolotukhin M, Sayenko A, Hamalainen T. on Optimal Deployment of Low Power Nodes for High Frequency Next Generation Wireless Systems[J].Computer Networks, 2018, 144 (OCT.24):120-140.

4. Zhang J. Real-time detection of energy consumption of IoT network nodes based on artificial intelligence[J].Computer Communications, 2020, 153(7):20-26.

5. Mohar S S, Goyal S, Kaur R. Optimized Sensor Nodes Deployment in Wireless Sensor Network Using Bat Algorithm [J].Wireless Personal Communications, 2020, 22(2):1-19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3