Author:
Xu Haihui,Ge Zhiyuan,Ao Wenjie
Abstract
This research delves into the application of the Autoregressive Integrated Moving Average (ARIMA) model for predicting climate change and its subsequent implications for decision-making within the insurance industry. The study introduces a comprehensive approach to forecast climatic variables such as temperature, rainfall, and relative humidity, which are critical factors in assessing insurance risks and formulating underwriting strategies. The ARIMA model, recognized for its efficacy in time series analysis, is employed to capture the seasonal patterns and trends in climatic data. The model is calibrated using historical weather records from two distinct regions, Dali and New York, to account for geographical variability in climate sensitivity. By integrating the model's predictions with economic indicators and industry-specific data, the research constructs a Weather Composite Index (WCI) that quantifies the potential impact of climate change on local economies and insurance claims. The paper meticulously describes the model's parameters, including the order of differencing (d), the number of autoregressive terms (p), and the number of moving average terms (q), which are selected to optimize the model's fit and predictive accuracy. The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are utilized to evaluate and compare the performance of different ARIMA configurations, ensuring that the chosen model minimizes the forecast error and provides the most reliable predictions.
Publisher
Darcy & Roy Press Co. Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A study based on the impact of extreme weather on the insurance industry;Transactions on Economics, Business and Management Research;2024-08-21