Experimental Study on the Evolution of Flame Trajectory Line Length for Two Buoyancy-controlled Linear Jet Flames at Different Inclined Angles

Author:

Chang Le,Wang Qiang

Abstract

This paper presents an experimental study of the flame trajectory line length for a buoyancy-controlled dual linear jet flame at different inclined angles (0° ~ 90°). Two nozzles of the same size (80mm*1mm) were used for the experiments, propane was used as the fuel, the range of fuel exit velocity was 0.63 ~ 4.17m/s, the range of burner spacing was 0-0.6m, and a digital camera was used to record the flame morphology. In this paper, a critical spacing Dc is introduced to indicate the change of flame height, and a prediction model of Dc and fuel exit velocity Uf is established to divide the flame trajectory length with spacing into two stages, namely: when S<Dc, the flame trajectory length increases significantly with the decrease of nozzle spacing; when S>Dc, the flame trajectory length does not change significantly with the increase of spacing, and finally approaches to a single free flame trajectory length. When S>Dc, the flame trajectory length did not change significantly with the increase of burner spacing, and finally approached to a single free flame trajectory length, so the flame trajectory length showed a complex non-monotonic evolution. Based on the analysis of the air entrainment, two global models are developed to predict the trajectory lengths of the buoyancy-controlled dual-jet flame system in two states with different initial inclined angles. the model was applied to correlate all the data in this study as well as the data in previous studies.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3