Analysis of the Migration of Carbon Dioxide in Deep Saline Fractured Aquifer

Author:

Liu Bin,Xu Chen,Sun Junchang,Yuan Hongqi

Abstract

 In order to control greenhouse gases and protect the environment, carbon dioxide emission reduction has become a global research hotspot. Fractures in the deep saline aquifer enhance the heterogeneity of the aquifer, and have an important effect on CO2 migration, thus the detailed description and characterization of fractures in geological structure are very important. Existing research on the impact of fractures on CO2 migration, however, ignores the role that the fractures' characteristics play in this process. This work aims at addressing this gap. Based on the embedded discrete fractured model (EDFM), we quantified the role of the fractures in the mechanism of CO2 migration and studied the length, aperture, and orientation of the fractures. It is found that the CO2 plume takes the fracture as its preferred channel and changes the migration direction. The longer the fracture length and wider the fracture aperture, the faster the CO2 migration rate is. The change in fracture orientation mainly affects the migration direction of the CO2 plume. Due to the different angles of the plume entering the fracture, the influences on the CO2 migration rate are also different. When the orientation is 45°, the CO2 migration rate is the fastest, while it is the slowest at 135°. When there is a complex fracture network in the aquifer, the heterogeneity of the aquifer is enhanced. Compared with the non-fractured aquifer, the direction and rate of CO2 migration are greatly changed, and the instability of CO2 sequestration is increased.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3