Innovations in Flexible Electronic Skin: Material, Structural and Applications

Author:

Chen Shijiao

Abstract

Flexible electronic skin (e-skin) has emerged as a promising technology for advanced sensing capabilities in applications such as robotics, prosthetics, and human-machine interfaces. The properties of e-skin devices hinge on the selection of appropriate materials and structures, such as sensitivity, mechanical flexibility, and biocompatibility. This article provides an overview of the current state of e-skin research, focusing on the materials and structures used to create e-skin devices. Various materials were discussed in this paper, including conductive polymers, carbon nanotubes, graphene, bacterial cellulose, metal-organic frameworks, ionogels, and self-healing materials, highlighting their unique properties and potential applications in e-skin designs. Additionally, the structures and architectures of e-skin devices were examined, covering aspects such as multilayer designs, hybrid structures, and hierarchical configurations. This comprehensive review offers valuable insights into the development and optimization of e-skin materials and structures, paving the way for the creation of innovative, high-performance e-skin devices for various applications.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3