Application of Naïve Bayes Algorithm Variations On Indonesian General Analysis Dataset for Sentiment Analysis

Author:

Umar Najirah,M. Adnan Nur

Abstract

Indonesian General Analysis Dataset is a dataset sourced from social media twitter by using keywords in the form of conjunctions to get a dataset that does not only focus on a particular topic. The use of Indonesian language datasets with general topics can be used to test the accuracy of the classification model so as to provide additional reference in choosing the right methods and parameters for sentiment analysis. One of the algorithms which in several studies produces the highest level of accuracy is naive Bayes which has several variations. This study aims to obtain the method with the best accuracy from the naive Bayes variation by setting the minimum and maximum document frequency parameters on the Indonesian General Analysis Dataset for sentiment analysis. The naive Bayes classifier variations used include Bernoulli naive Bayes, gaussian naive Bayes, complement naive Bayes and multinomial naive Bayes. The research stage begins with downloading the dataset. Preprocessing becomes the next stage which consists of tokenizing, stemming, converting abbreviations and eliminating conjunctions. In the preprocessed data, feature extraction is carried out by converting the dataset into vectors and applying the TF-IDF method before entering the sentiment analysis classification stage. Tests in this study were carried out by applying the minimum document frequency (min-df) and maximum document frequency (max-df) for each variation of naive Bayes to obtain the appropriate parameters. The test uses k-fold cross validation of the dataset to divide the training data and sentiment analysis test data. The next confusion matrix is ​​made to evaluate the level of accuracy.  

Publisher

Ikatan Ahli Informatika Indonesia (IAII)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Algorithms Naïve Bayes and C45 for Student Satisfaction with Administrative Services;2023 International Conference of Computer Science and Information Technology (ICOSNIKOM);2023-11-10

2. Multi-Class Text Classification on Khmer News Using Ensemble Method in Machine Learning Algorithms;Acta Informatica Pragensia;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3