Topic Classification of Quranic Verses in English Translation Using Word Centrality Measurement

Author:

Achmad Salim Aiman ,Kemas Muslim Lhaksmana ,Jondri

Abstract

Every Muslim in the world believes that the Quran is a miracle and the words of God (Kalamullah) revealed to the Prophet Muhammad SAW to be conveyed to humans. The Quran is used by humans as a guide in dealing with all problems in every aspect of life. To study the Quran, it is necessary to know what topic is being discussed in every single verse. With the help of technology, the verses of the Quran can be given topics automatically. This task is called multilabel classification where input data can be classified into one or more categories. This research aims to apply the multilabel classification to classify the topics of the Quranic verses in English translation into 10 topics using the Word Centrality measurement as the word weighting value. Then a comparison is made to the 4 classification methods, namely SVM, Naïve Bayes, KNN, and Decision Tree. The result of the centrality measurement shows that the word ‘Allah’ is the most important or the most central word of the whole document of the Quran with the scenario using stopword removal. Furthermore, the use of word centrality value as term weighting in feature extraction can improve the performance of the classification system.

Publisher

Ikatan Ahli Informatika Indonesia (IAII)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Centrality-Based Multilabel Neural Networks Classification of Qur'an Verse Topics;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3