Pollen characterization of the bee flora from a Caatinga area of Northeast Brazil

Author:

Marques de Souza Dias IlanaORCID,Magalhães e Silva Francisco HilderORCID,Lima e Lima Luciene CristinaORCID,Dias Saba MarileideORCID

Abstract

Background: Plants and bees have coevolved throughout geological time, establishing a mutualistic relationship that results in feeding/resource obtention by bees and the reproductive success of angiosperms. Questions and Hypotheses: What is the floristic composition of the vegetation visited by bees in the Caatinga? How are pollen grains from Caatinga bee plant species characterized? Do pollen grains of bee plant species present characters that could be associated with the pollination process? Studied species: We studied the pollen grains of 45 bee plant species belonging to 41 genera and 23 angiosperm families. Among the studied species, 37 % are endemic to Brazil, and eight species are endemic to the Caatinga biome. Study site and dates: Apiary within the Caatinga biome, in the State of Bahia, Brazil. Climate warm semiarid. Fieldwork was carried out between August 2016 and June 2017. Methods: Plants in bloom and being visited by Apis mellifera were collected during biweekly field expeditions, herborized, identified, and deposited at the HUNEB herbarium. Pollen grains were acetolyzed, characterized, and microphotographed under light microscopy. Results: Forty-five bee plants were collected and classified according to field observations and specialized literature. Pollen morphology was variable, and nine species had their pollen morphology described for the first time. The apertures of the studied pollen grains were mainly tricolporate (44 %), pantoporate (15 %), and inaperturate (13 %), and exine ornamentation was mainly (micro)reticulate (46 %) and (micro)echinate (33 %). Conclusions: Our results suggest that bee plants present a set of palynological characters that may favor entomophily. Translate stop   Translate stop  

Publisher

Botanical Sciences, Sociedad Botanica de Mexico, AC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3