Phenology, yield, and phytochemicals of Capsicum spp. in response to shading

Author:

De la Cruz-Ricardez DarioORCID,Lagunes-Espinoza Luz del C.ORCID,Ortiz-García Carlos F.ORCID,Hernández-Nataren EdithORCID,Soto-Hernández Ramón M.ORCID,Acosta-Pech Rocío G.ORCID

Abstract

Background: Capsicum spp. grow in environments with different incident radiation, that could modify the plant growth and the concentration of phytochemicals in fruits. Hypothesis: Shading positively affects phenology and fruit yield, decreases the total contents of phenols (TPC), flavonoids (FLV), proanthocyanidins (PAN) and carotenoids (CAT) in fruits of wild Capsicum species. Studied species: Capsicum annuum var. glabriusculum: amashito (AMA) and garbanzo (GAR), and C. frutescens (Pico Paloma, PIP) Study site and dates: Huimanguillo, Tabasco, Mexico; 2020 and 2021. Methods: Seeds were treated with gibberellic acid (GA3) (500 mg L-1) for 24 h prior to seeding. The seedlings were transplanted in an open field and under two levels of shade (35 and 70 %) under a subsplit plot design with four replicates. TPC, FLV, PAN and CAT were determinate in immature and ripe fruits by UV-vis spectrophotometry. Results: Shade accelerated the phenological processes from the first bifurcation of the stem, and decreased the fruits ripening time from anthesis of the genotypes studied. Shade only increased the yield of the AMA genotype and reduced the contents of TPC, FLV, and CAT; however, these metabolites increased under open field conditions. Conclusions: The shade reduced the duration of phenological stages including the ripening period of fruits, and increased the plant height of the Capsicum spp. The increase in yield by shading effect only was observed in AMA genotype. The content of phytochemicals in Capsicum fruits is reduced by shading levels.

Publisher

Botanical Sciences, Sociedad Botanica de Mexico, AC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physiological, growth, yield, and quality responses of hot pepper due to shade level;International Journal of Vegetable Science;2023-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3