Approaches, potential, and challenges in the use of remote sensing to study mangrove and other tropical wetland forests

Author:

Chávez DanielORCID,López-Portillo JorgeORCID,Gallardo-Cruz J. AlbertoORCID,Meave Jorge A.ORCID

Abstract

Tropical wetland forests are fragile ecosystems facing critical risks due to global warming and other anthropogenic threats. Hence, gathering accurate and reliable information on them is urgent. Although remote sensing has demonstrated great potential in studying terrestrial ecosystems, remote sensing-based wetland forest research is still in an early stage of development. Mapping wetland forests, particularly mangrove forests, was an initial goal of this approach and is a task that still faces methodological challenges. Initially based on aerial photography only, wetland forest mapping through remote sensing underwent explosive diversification after the launching of artificial satellites in the 1970s. Later, precision in wetland forest mapping increased with the combination of hyperspectral, multispectral, and high and very high resolution imagery. Accurate delimitation of wetland forest extent is also necessary to assess their temporal dynamics (losses, gains, and horizontal displacement). Despite the prevalence of mapping studies, current remote sensing-based research on wetland forests addresses new questions and novel aims, such as describing and predicting wetland forest attributes through mathematical modeling. Although this approach has made substantial progress in recent decades, modeling and predicting wetland forest attributes remain insufficiently explored fields of research. Combining active and passive sensors is a promising alternative to provide a more accurate picture of these communities’ attributes. In particular, LiDAR and radar-based technologies may help overcome difficulties encountered in older studies. In the future, we will witness conceptual and methodological progress that will enable us to surmount the remaining challenges.

Publisher

Botanical Sciences, Sociedad Botanica de Mexico, AC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3