Seasonal changes in photosynthesis for the epiphytic bromeliad Tillandsia brachycaulos in a tropical dry deciduous forest

Author:

González-Salvatierra ClaudiaORCID,Peña-Rodríguez Luis ManuelORCID,Reyes-García CasandraORCID,De la Barrera ErickORCID,Andrade José LuisORCID

Abstract

Background: Sunlight stress and drought affect plants by inducing various biochemical and physiological responses, which reduce growth. Seasonal changes in light and water availability that occur in forest canopies, where epiphytes occur, are extreme. Questions: What are the seasonal changes in photosynthesis for an abundant epiphytic bromeliad in contrasting microenvironments? Is Crassulacean acid metabolism (CAM) an important feature of photoprotection for this epiphyte? Studied species: Tillandsia brachycaulos Schltdl. (Bromeliaceae) Study site and dates: Canopy of the tropical dry deciduous forest of Dzibilchaltún National Park, Yucatan, Mexico during the rainy season 2008 and dry season 2009. Methods: Diurnal measurements of photosystem II efficiency, titratable acidity, leaf water potential, and photosynthetic pigment concentration were measured during the dry and rainy seasons in adult plants of T. brachycaulos in shaded and exposed microenvironments. The prevailing environmental conditions (photon flux density, precipitation, air temperature and relative humidity) were also seasonally characterized. Results: The highest irradiance occurred during the dry season caused photo-inactivation, a decrease of the quantum efficiency of photosystem II and a reduction in CAM activity of about 40 % in leaves of exposed plants of T. brachycaulos. During the rainy season, the leaf water potential of exposed and shaded plants of T. brachycaulos was lower at midday than at predawn, indicating water loss during the day. Conclusions: Individuals of T. brachycaulos reduced CAM activity during the dry season; and, during the rainy season, increased carbon gain by stomata opening during phase II and IV of CAM.

Publisher

Botanical Sciences, Sociedad Botanica de Mexico, AC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3