Vertical displacement monitoring technique using radar interferometry data

Author:

Orlenko TetianaORCID

Abstract

All phenomena and processes occurring on the Earth's surface are closely related. Earth is characterized by internal and external planetary geological processes, which, throughout the entire geological development of the Earth, lead to its change. The speed and scale of geological processes change in time and space due to climatic changes. Changes are divided into long-term and momentary ones, which cause catastrophic phenomena, including landslides. An essential component of geoecological research is monitoring landslide processes using data from remote sensing of the Earth. The possibility of remote geoecological monitoring of landslide processes using satellite radar interferometry has been investigated, tested and experimentally substantiated. The right bank of the Kaniv Reservoir, with many registered landslides, was chosen as the test site. The results of the activity of vertical displacements of landslides for the spring period from 2015 to 2023 were obtained. Nine test sites and five control, stable areas affected by active surface deformations were investigated using 45 Sentinel-1A images. Geoecological monitoring of the activation of landslide processes at a detailed level was carried out using Sentinel-1 satellite images, a digital terrain model (DEM), topographic maps of various scales, and geological maps of Quaternary and pre-Quaternary structures. The advantage of the study of landslide processes by remote methods is the ability to quickly, on large areas, with relatively high accuracy and minimal economic costs, solve the problems of environmental protection to ensure the sustainable development of the environment and society.

Publisher

CASRE of the IGS of NASU

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MONITORING OF VERTICAL DISPLACEMENTS OF THE EARTH SURFACE OF THE RIGHT BANK OF THE KANIV RESERVOIR;Visnyk of Taras Shevchenko National University of Kyiv. Geology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3