Combined Radar Monitoring of Long Surface Wave Packets in the Pacific Ocean

Author:

Velichko SergeyORCID,Matweev OleksandrORCID,Bychkov DmytryORCID,Ivanov ViktorORCID,Tsymbal ValeryORCID

Abstract

In order to continue and more detailed study of the manifestations of seismic activity on the World Ocean surface, in this work we verified the complex technique of airborne radar monitoring and research of long surface wave packets in the seismically active region in the Northwest Pacific Ocean near the Kuril-Kamchatka Trench. When verifying the technique proposed in the previous work, we used data from two series of radar surveys of the sea surface within the study area in the 3-cm range of radio wave lengths. The first series of radar surveys had included tacks of flights along the north–south direction, to which, for comparison, the results of the second series in the west–east direction were added. These radar images, presented in the work, detect manifestations of two surface wave packets propagating from the same area, in the same direction, with an interval of 16 hours. For a comprehensive study of surface wave packets based on a set of radar images of two series and to establish the nature of their origin, a combined spatial and spectral analysis of the nonlinear form of the wave packet components was performed. As a result, the spatial scale of surface wave packets (5–10 km), the lengths of the wave components of the packets (1–5 km) and the speed of packets movement (6.1 m/s) were determined. The analysis involved the parameters of the ocean-atmosphere near-surface layer, provided by operational in situ measurements, which were obtained by the research vessel "Akademik Petrov". This included the direction and speed of the near-surface wind, the state of wind waves and swell, the speed of the surface current, etc. In addition, data on bathymetry along the path of the surface wave packet and seismic activity in the area were used. Finally, it was assumed that the observed packets of surface waves are Korteweg – de Vries solitons, which arise as a result of collapses on the steep underwater slopes of the Kuril-Kamchatka Trench due to a seismic shock and the aftershock that followed it. The developed airborne radar technique can also be used in satellite monitoring of the surface of the World Ocean in systems for warning about the approach of potentially dangerous long waves to the coast.

Publisher

CASRE of the IGS of NASU

Subject

General Medicine

Reference21 articles.

1. Alpers, W., Stilke, G. (1996). Observation of a nonlinear wave disturbance in the marine atmosphere by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res., 101(C3), 6513–6525.

2. Apel, J. R., & Holbrook, J. R. (1983). Internal solitary waves in the Sulu Sea. Johns Hopkins APL Technical Digest, 4(4), 267–275.

3. Boev, A. G., Boeva, A. A., Matveyev, O. Y. (2010). Radar contrast of wind ripples on the sea wave of seismic origin. Radio Physics and Radio Astronomy, 15(4), 453–461. DOI: https://doi.org/10.15407/rpra.

4. Boev, А. G., Efimov, V. B., Tsymbal, V. N. (Ed.), Yatsevich, S. Ye., Каlmykov, I. А., Кurekin, А. S., … Dranovskii, V. I. (Eds.) (2007). Radar methods and facilities for operational Earth remote sensing from airborne and spaceborne carriers. Kiev : NAS of Ukraine Publ.

5. Dwi Susanto, R., Mitnik, L., Zheng, Q. (2005). Ocean internal waves observed in the Lombok Strait, Oceanography, 18(4), 80–87.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3