Predicting Fractures Using Vertebral 18F-NaF Uptake in Prostate Cancer Patients

Author:

Chesnais HeleneORCID,Bastin NikitaORCID,Miguez SofiaORCID,Kargilis DanielORCID,Kalluri AnitaORCID,Terry AshleyORCID,Rajapakse Chamith S.ORCID

Abstract

Background: Patients with prostate cancer tend to be at heightened risk for fracture due to bone metastases and treatment with androgen-deprivation therapy. Bone mineral density (BMD) derived from dual energy X-ray absorptiometry (DXA) is the standard for determining fracture risk in this population. However, BMD often fails to predict many osteoporotic fractures. Patients with prostate cancer also undergo 18F-sodium fluoride (<sup>18</sup>F-NaF)-positron emission tomography/computed tomography (PET/CT) to monitor metastases. The purpose of this study was to assess whether bone deposition, assessed by <sup>18</sup>F-NaF uptake in <sup>18</sup>F-NaF PET/CT, could predict incident fractures better than DXA- or CT-derived BMD in patients with prostate cancer.Methods: This study included 105 males with prostate cancer who had undergone full body <sup>18</sup>F-NaF PET/CT. Standardized uptake value (SUVmean and SUVmax) and CT-derived Hounsfield units (HU), a correlate of BMD, were recorded for each vertebral body. The average SUVmean, SUVmax, and HU were calculated for cervical, thoracic, lumbar, and sacral areas. The t-test was used to assess significant differences between fracture and no-fracture groups.Results: The SUVmean and SUVmax values for the thoracic area were lower in the fracture group than in the no-fracture group. There was no significant difference in cervical, thoracic, lumbar or sacral HU between the 2 groups.Conclusions: Our study reports that lower PET-derived non-metastatic bone deposition in the thoracic spine is correlated with incidence of fractures in patients with prostate cancer. CT-derived HU, a correlate of DXA-derived BMD, was not predictive of fracture risk. <sup>18</sup>F-NaF PET/CT may provide important insight into bone quality and fracture risk.

Publisher

Korean Society for Bone and Mineral Research

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3