Osteoporosis Feature Selection and Risk Prediction Model by Machine Learning Using a Cross-Sectional Database

Author:

Cha YonghanORCID,Seo Sung HyoORCID,Kim Jung-TaekORCID,Kim Jin-WooORCID,Lee Sang-YeobORCID,Yoo Jun-IlORCID

Abstract

Background: The purpose of this study was to verify the accuracy and validity of using machine learning (ML) to select risk factors, to discriminate differences in feature selection by ML between men and women, and to develop predictive models for patients with osteoporosis in a big database.Methods: The data on 968 observed features from a total of 3,484 the Korea National Health and Nutrition Examination Survey participants were collected. To find preliminary features that were well-related to osteoporosis, logistic regression, random forest, gradient boosting, adaptive boosting, and support vector machine were used.Results: In osteoporosis feature selection by 5 ML models in this study, the most selected variables as risk factors in men and women were body mass index, monthly alcohol consumption, and dietary surveys. However, differences between men and women in osteoporosis feature selection by ML models were age, smoking, and blood glucose level. The receiver operating characteristic (ROC) analysis revealed that the area under the ROC curve for each ML model was not significantly different for either gender.Conclusions: ML performed a feature selection of osteoporosis, considering hidden differences between men and women. The present study considers the preprocessing of input data and the feature selection process as well as the ML technique to be important factors for the accuracy of the osteoporosis prediction model.

Funder

Korea Health Industry Development Institute

Ministry of Health and Welfare

Publisher

Korean Society for Bone and Mineral Research

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3