The effect of detailing the trabecular structure of bone phantoms on the assessment of the bone marrow dose from 89,90Sr

Author:

Sharagin P. A.1,Shishkina E. A.2,Tolstykh E. I.1,Degteva M. O.1

Affiliation:

1. Urals Research Center for Radiation Medicine, Federal Medical Biological Agency

2. Urals Research Center for Radiation Medicine, Federal Medical Biological Agency; Chelyabinsk State University

Abstract

Today there exist two main approaches to developing computational phantoms for bone dosimetry. The first approach is based on a detailed description of the microarchitecture of the spongiosa filling the phantoms. This microarchitecture includes trabeculae and bone marrow separately, i.e., the source tissue and the detector tissue are separated. The second approach involves generating a homogeneous bone where the target and source tissues are combined. In both cases the simulation results are conversion factors that allow converting the specific activity of incorporated radionuclides into the absorbed dose in the bone marrow. For dosimetry of the Techa River population exposed due to incorporated 89,90Sr, the skeletal phantoms were created for people of different sex and age, starting with a newborn. These phantoms included a detailed description of the trabecular bone microstructure, i.e., they belong to the first approach. Also, phantoms of the skeleton of the fetus and pregnant woman at various gestation stages have been developed, which involves modeling the bone as a homogeneous medium. These phantoms are designed for dosimetry of external and internal exposure, including 89,90Sr dosimetry. The usage of two fundamentally different approaches to bone dosimetry for the pre- and postnatal period raises the issue of compatibility of these approaches and possibility of their combining within a single dosimetric system. Objective: to evaluate the effect of detailing the trabecular structure of bone phantoms on the evaluation of conversion factors of bone marrow exposure due to 89,90Sr. Computational phantoms of eight regions of a newborn’s skeleton filled in with trabecular bone were generated. For each bone region two phantoms were generated: one phantom with a detailed description of the spongiosa microstructure and one phantom with spongiosa modeled as a homogeneous media. For all phantoms, the radiation transport from 89,90Sr incorporated in the source tissue was simulated using the MCNP 6.2 code, and the values of conversion factors were calculated. As a result, 16 conversion factors were obtained for all phantoms. On the average the conversion factors obtained for phantoms with homogeneous spongiosa exceed those for phantoms with a detailed description of the spongiosa microstructure by 2.4 times. Such significant difference between the results makes it possible to conclude that the detailing description of trabecular structure of bone phantoms has a significant impact on the assessment of the bone marrow dose due to incorporated 89,90Sr.

Publisher

SPRI of Radiation Hygiene Prof. PV Ramzaev

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3