Tritium contamination of surface and ground waters at the “Dnepr” peaceful underground nuclear explosions site

Author:

Ramzaev V. P.1,Biblin A. M.1,Repin V. S.1,Khramtsov E. V.1,Varfolomeeva K. V.1

Affiliation:

1. Saint-Petersburg Research Institute of Radiation Hygiene after Professor P. V. Ramzaev, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Abstract

The article presents results of a study on the tritium content in surface and ground waters in the area of peaceful underground nuclear explosions of the “Dnepr” series. Low-yield thermonuclear explosions (1.8–2.1 kt of TNT equivalent) were carried out inside Mount Kuel’por (Khibiny Massif, Kola Peninsula, Murmansk Oblast, the Russian Federation) in 1972 and 1984. The purpose of the explosions was to crush the ore body (apatite minerals), followed by the extraction of the crushed rock to the ground surface. The main long-term problem generated by these explosions was the flow of tritium-contaminated groundwater onto the ground surface. The area where the explosions took place is actively visited by tourists. Water from local reservoirs, in particular from the Kuniyok River, is used by people for drinking. The purpose of this study was to assess the drinkability of the local waters in terms of activity concentration of tritium. To achieve this goal, 35 water samples were taken in 2019 from wells, boreholes, rivers, streams, lakes and other accessible environmental waterbodies. Activity concentration of tritium in the samples was determined using the Quantulus 1220 low-background liquid scintillation spectrometer. The activity concentration of tritium in the water samples was in a rather wide range: from less than 2 Bq/kg up to 1510 Bq/kg. The maximum value was up to three orders of magnitude higher than the regional background level of approximately 2 Bq/kg. At the same time, the maximum activity concentration was significantly lower compared to the intervention level for drinking water (7600 Bq/kg, according to Sanitary Norms and Rules of the Russian Federation). Based on the results of this study and data obtained by other researchers earlier, it became possible to assess the half-time for decrease of activity concentration of tritium in surface and ground waters in the period 2008–2019. The mean value (± standard error of the mean) of the effective half-time of tritium in water from the mine, the boreholes, and the Kuniyok River was estimated as 4.4 ± 0.2 year. The decrease in activity concentration of tritium in water depended more on ecological processes (dilution with “pure” water) than on physical decay of the radionuclide. In 2019, the estimated value of the effective dose due to ingestion of tritium in drinking water from the Kuniyok River was 0.17 μSv; this was negligible compared to the dose limit of 1 mSv per year for the public.

Publisher

SPRI of Radiation Hygiene Prof. PV Ramzaev

Subject

Radiology, Nuclear Medicine and imaging

Reference29 articles.

1. UNSCEAR – United Nations Scientific Committee on Atomic Radiation. 2000 REPORT, Sources and Effects of Ionizing Radiation. United Nations, New York; 2000. Vol. 1.

2. UNSCEAR – United Nations Scientific Committee on Atomic Radiation. 2016 Report, Sources, Effects and Risks of Ionizing Radiation, Annex C – Biological Effects of Selected Internal Emitters – Tritium. United Nations, New York; 2017.

3. Eyrolle F, Ducros L, Le Dizès S, Beaugelin-Seiller K, Charmasson S, Boyer P, Cossonnet C. An updated review on tritium in the environment. Journal of Environmental Radioactivity. 2018;181: 128–137. DOI: 10.1016/j.jenvrad.2017.11.001.

4. Standards and Guidelines for Tritium in Drinking Water. Minister of Public Works and Government Services, Canada. 2008. Available on: https://nuclearsafety.gc.ca/pubs_catalogue/uploads/info_0766_e.pdf. [Accessed 23.10.2021].

5. Makhon’ko KP, Kim VM, Katrich IY, Volokitin AA. Comparison of the behavior of tritium and 137Cs in the atmosphere. Atomnaya Energiya = Atomic Energy. 1998;85(4): 313–318. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3