Application of Multi-Channel Analysis Surface Waves and Electrical Resistivity Tomography Methods to Identify Weak Zones at University of Mosul, Northern Iraq

Author:

Al-Heety Ahmed J.,Shanshal Zainab M.,Al-Mashhadany Auday Y.

Abstract

Cracks have been developed in a large lecture hall on the University of Mosul Campus. These cracks exist along two sides of the building. Multi Analysis Surface Wave and Electrical Resistivity Tomography surveys were conducted at the surrounding building to investigate the nature and distribution of shallow subsurface soil/rock. The MASW’s data show three layers: the first layer is characterized by low shear wave velocity ranges between 210 and 420 m/s which is attributed to infill materials, the next layer is attributed to a river terrace (fairly competent rock) which has Vs ranging from 430m/s to 840 m/s. It is recognized by a gradual increase in mechanical characteristics as depth increases. In-depth between about 2.5m and 6.0 m the shear wave velocity drops in the top contact of this layer. The causes of low velocity may be due to weathering of the medium because of a sinkhole. The Electrical Resistivity Tomography profile shows four electrical zones, the first zone has 50-70 Ω.m. with a variable thickness from 0.5-1.5 m which indicates infill materials. The second zone has very low resistivity value, and a depth ranges 0.5m - 3.5 m, which might be interpreted to be increased clay, silt and water content (high water-saturated zone). The third zone is characterized by a high-resistivity value (>100 Ω.m) that could be related to a dry conglomerate rock and gravels belong to river terraces. The fourth zone has a low-resistivity value (<20 Ω.m) associated with a water-saturated marl bed. We could be definitively correlated the resistivity and velocity anomalies to sinkhole activity in were identified and characterized using combined geophysical methods. The Multi Analysis Surface Waves and Electrical Resistivity Tomography were shown to complete each other in the evaluation. The variations in Vs (low velocity) and resistivity (conductive zone) within the river terrace were detected and proposed to be indicative of dissolution and the subsidence responsible for structural damage implied by the change in the velocity and resistivity. The roughness of the top terrace surface strongly influences the nature of the velocity and resistivity values. This roughness is suggestive of dissolution or erosion.

Publisher

Union of Iraqi Geologists (UIG)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3