Diabetes Prediction Using Colab Notebook Based Machine Learning Methods

Author:

YAKUT Önder1ORCID

Affiliation:

1. KOCAELİ ÜNİVERSİTESİ

Abstract

Diabetes is getting more and more common around the world. People suffer from diabetes or live at risk associated with this disease. It is necessary to prevent health problems caused by diabetes, to reduce the risk of diabetes and to reduce a load of diabetes on the health system. Therefore, it is important to diagnose and treat diabetic patients early. In this study, Pima Indian Diabetes (PID) database was used to predict diabetes. Random Forest Classifier, Extra Tree Classifier and Gaussian Process Classifier machine learning methods have been used to predict whether individuals have diabetes or not. In this study, the method with the highest prediction accuracy was determined as the Random Forest Classifier. The accuracy of the recommended method was 81.71%. The proposed method was developed to assist clinicians in predicting diabetic patients using diagnostic measurements. The machine learning methods developed in this study were applied using Colab Notebook a Google Cloud Computing service.

Publisher

International Journal of Computational and Experimental Science and Engineering (IJCESEN)

Subject

General Medicine

Reference18 articles.

1. [1]Diabetes Overview, (2022). https://www.who.int/ne ws-room/fact-sheets/detail/diabetes

2. [2]Diabetes, (2022). https://www.who.int/health-topics /diabetes#tab=tab_1

3. [3]Güldoğan, E., Zeynep, T. U. N. Ç., Ayça, A. C. E. T., & ÇOLAK, C. (2020). Performance evaluation of different artificial neural network models in the classification of type 2 diabetes mellitus. The Journal of Cognitive Systems, 5(1), 23-32.

4. [4]Maulidah, N., Abdilah, A., Nurlelah, E., Gata, W., & Hasan, F. N. (2020). Seleksi Fitur Klasifikasi Penyakit Diabetes Menggunakan Particle Swarm Optimization (PSO) Pada Algoritma Naive Bayes. Elkom: Jurnal Elektronika dan Komputer, 13(2), 40-48.

5. [5]Tigga, N. P., & Garg, S. (2020). Prediction of type 2 diabetes using machine learning classification methods. Procedia Computer Science, 167, 706-716.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3