Abstract
Wireless Body Area Networks (WBANs) are one of the most critical technologies for maintaining constant monitoring of patient’s health and diagnosing diseases. They consist of small, wearable wireless sensors transmitting signals. Within this vision, WBANs are not without unique difficulties, for instance, high energy consumption, heat from the sensor, and impaired data accuracy. This paper introduces adaptive algorithms combining Convolutional Neural Networks (CNNs) and dynamic threshold mechanisms to enhance the performance and energy efficiency of Wireless Body Area Networks. The study utilizes the MIB-BIH Arrhythmias dataset to improve the detection of arrhythmias. The results show a 10.53% improvement in battery life and a 5.62-fold enhancement in temperature management when sleep mode technology is applied. As a result, the model reached the average accuracy of ECG classification of 98% and a high level of selectivity and sensitivity to a normal type of heartbeat and quite satisfactory results in the classification of arrhythmia type of heartbeat.
Publisher
International Journal of Computational and Experimental Science and Engineering