Comparative study of evolution of structured flows at boundary of the regime change “diffusion — concentration convection” in isothermal multicomponent mixing in gases by techniques of visual and numerical analysis

Author:

Kossov V.N.,Krasikov S.A.,Belov S.M.,Fedorenko O.V.,Zhaneli M.

Abstract

During isothermal multicomponent diffusion process, the number of effects appear that are not observed visually when mixed in binary mixtures. These include occurrence of convective instability with subsequent formation of structured flows. The feature of this type of mixing is that convection is realized under conditions of decrease in density of mixture with height. Flow visualization method allows to fix information about distribution of medium parameters by dynamics of structures in convective flows. Application of computer processing methods, as well as techniques of identifying images of thermophysical fields, allows to obtain quantitative information about convective flows. For an isothermal ternary gas mixture heliumargonnitrogen, shadow images of structural formations formed in convective flows due to the instability of mechanical equilibrium are represented in this work. To carry out digital analysis of experimental shadow images, a simplified virtual model of the lower chamber of the diffusion cell was created. Based on digital analysis of visual images, quantitative characteristics related to estimation of the size of convective formations, period of their formation, and linear velocity of convection cells when moving through diffusion channel are presented. It has been established that the growing convective disturbances arising in the system cause a change in the characteristic scale of convective cells. The analysis of shadow images also showed that a vortex is formed in convective flows, which consists mainly of a component with the highest molecular weight. Comparison of visual images of experimental fields with simulation flows is implemented, on the basis of which composition of mixture components in convective structures is estimated. It is shown that the obtained value of the concentration of the heavy component in the vortex filament can be taken as the minimum.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

Microbiology (medical),Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3