Effect of WS2 nanoparticles on the current-voltage characteristics of a polymer solar cell

Author:

Rozhkova X.S.,Aimukhanov А.К.,Ilyassov B.R.,Tussupbekova A.K.,Zeinidenov A.K.,Alexeev А.М.,Zhakanova A.M.

Abstract

The paper presents the results of studies of the effect of tungsten disulfide nanoparticles on the optical and electrotransport characteristics of PEDOT: PSS thin films in polymer solar cells. Tungsten disulfide (WS2) nanoparticles were obtained by laser ablation in isopropyl alcohol. The average size of nanoparticles were determined by dynamic light scattering and is ~38 nm. The concentration of WS2 nanoparticles in the solution was calculated based on the density of the WS2 substance. The absorption spectrum of nanoparticles in isopropyl alcohol has been measured. Two bands are observed in 500-900 nm regions, which are associated with direct exciton transitions A1 and B1 in two-dimensional transition metal dichalcogenides with 2H phase. WS2 nanoparticles were added in PEDOT: PSS solution and thin films were deposited from the preparedsolution by spin-coating. PEDOT: PSS thin films doped with WS2 were studied by atomic force microscopy (AFM). The arithmetic mean deviation of the surface roughness (Ra) was estimated. Doping with WS2 nanoparticles leads to the increase in Ra of PEDOT: PSS thin films. The optical absorption spectra of doped films have been measured. Also, doping PEDOT: PSS with WS2 nanoparticles results in a long-wavelength shift of the PEDOT absorption maximum. The optimal concentration of WS2 nanoparticles for the preparation of doped PEDOT: PSS thin films is determined, at which the film resistance decreases by almost 2 times, the recombination resistance of charge carriers increases by 4.7 times, and the efficiency of the polymer solar cell increases to 1.94 %.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

Microbiology (medical),Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3