Author:
Ramazanov M.I.,Gulmanov N.K.,Kopbalina S.S.
Abstract
In this paper, the boundary value problem of heat conduction in a domain was considered, boundary of which changes with time, as well as there is no the problem solution domain at the initial time, that is, it degenerates into a point. To solve the problem, the method of heat potentials was used, which makes it possible to reduce it to a singular Volterra type integral equations of the second kind. The peculiarity of the obtained integral equation is that it fundamentally differs from the classical Volterra integral equations, since the Picard method is not applicable to it and the corresponding homogeneous integral equation has a nonzero solution.
Publisher
Karagandy University of the name of academician E.A. Buketov
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献