Method of functional parametrization for solving a semi-periodic initial problem for fourth-order partial differential equations
-
Published:2020-12-30
Issue:4
Volume:100
Page:5-16
-
ISSN:2518-7929
-
Container-title:BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS
-
language:
-
Short-container-title:Bul. Kar. Univ. - Math.
Author:
Assanova A.T.ORCID,
,
Tokmurzin Zh.S.,
Abstract
A semi-periodic initial boundary-value problem for a fourth-order system of partial differential equations is considered. Using the method of functional parametrization, an additional parameter is carried out and the studied problem is reduced to the equivalent semi-periodic problem for a system of integro-differential equations of hyperbolic type second order with functional parameters and integral relations. An interrelation between the semi-periodic problem for the system of integro-differential equations of hyperbolic type and a family of Cauchy problems for a system of ordinary differential equations is established. Algorithms for finding of solutions to an equivalent problem are constructed and their convergence is proved. Sufficient conditions of a unique solvability to the semi-periodic initial boundary value problem for the fourth-order system of partial differential equations are obtained.
Publisher
Karagandy University of the name of academician E.A. Buketov
Subject
General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献