Smoothness and approximative properties of solutions of the singular nonlinear Sturm-Liouville equation

Author:

Muratbekov M.B.ORCID, ,Muratbekov M.M.ORCID,

Abstract

It is known that the eigenvalues λn(n = 1, 2, ...) numbered in decreasing order and taking the multiplicity of the self-adjoint Sturm-Liouville operator with a completely continuous inverse operator L^{−1} have the following property (*) λn → 0, when n → ∞, moreover, than the faster convergence to zero so the operator L^{−1} is best approximated by finite rank operators. The following question: - Is it possible for a given nonlinear operator to indicate a decreasing numerical sequence characterized by the property (*)? naturally arises for nonlinear operators. In this paper, we study the above question for the nonlinear Sturm-Liouville operator. To solve the above problem the theorem on the maximum regularity of the solutions of the nonlinear Sturm-Liouville equation with greatly growing and rapidly oscillating potential in the space L2(R) (R = (−∞, ∞)) is proved. Twosided estimates of the Kolmogorov widths of the sets associated with solutions of the nonlinear SturmLiouville equation are also obtained. As is known, the obtained estimates of Kolmogorov widths give the opportunity to choose approximation apparatus that guarantees the minimum possible error.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3