Abstract
The development of methods for targeted delivery of payload is a rapidly developing area of research.For this reason, iron oxide nanoparticles have potential to be used in delivery of substances by using external magnetic field. However it is necessary to develop methods of their modification, which will lead to the pos-sibility of immobilization of payloads with the required concentration for therapeutic use. In this article, supermagnetic iron oxide nanoparticles (Fe3O4) were modified with silanes such as (3-chloropropyl)-trimethoxysilane, (3-mercaptopropyl)trimethoxysilane, (3-aminopropyl)trimethoxysilane and (3-glycidyl-propyl)trimethoxysilane by reaction of polycondensation. Then carborane compound (payload) was success-fully attached on the modified nanoparticles via covalent bonding. Structure, size and element composition were studied by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDA). It was found that resulting nanoparticles contain 16.6% of bo-ron (according to EDA), and their average size is 32±9 nm (according to SEM). In vitro test using HeLa (cer-vical cancer cell) and PC-3 (prostate cancer cell) shows low cytotoxicity in concentration range of 1–200μg/ml.
Publisher
Karagandy University of the name of academician E.A. Buketov
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献