Displacement fields of a Cuboid crystal in a Photoacoustic Cell: Mathematical aspects

Author:

Sarode A.P., ,Mahajan O.H.,

Abstract

Photo acoustic effect is popular due to a minimal sample preparation during execution, the ability to examine scattering and opaque sample along with the capability to access depth profile. These features enable Photoacoustic spectroscopy to be used in depth-resolved characterization of solids. Thermal interaction is a basic perspective in solid state physics research regarding industrial devices and components. It is a key factor of fabrication and performance of such devices and components. Today, crystalline solids are widely studied due to their wide scientific and industrial applications. Displacement field resulting in thermal stresses is one of the important aspects of premature failure of industrial components and devices. In this paper, displacement fields in photoacoustic effect with solid cuboid crystal are mathematically presented. According to our opinion, displacement fields in photoacoustic effect in three dimensional analysis are not reported earlier. Hence that will be a major contribution of this paper. For a simple cuboid homogeneous crystal kept in a photoacoustic cell, an airy stress function is determined based on laser interaction with surface of the crystal. By applying the finite Marchi-Fasulo integral transform method within the crystal size limitations, displacement field is exactly determined.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical aspects of Photoacoustic Signal Generation with Solid Crystals;Bulletin of the Karaganda University. "Physics" Series;2021-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3