Finite element modeling of heat propagation of a complete rod of constant cross-section

Author:

Kenzhegulov B.Z.,Kenzhegulova S.B.,Alibiyev D.B.,Kazhikenova A.Sh.

Abstract

In this paper, the definition of the temperature distribution field for a rod made of heat-resistant alloy EI48 is introduced. The authors consider for the study a complete rod of circular cross-section of radius R, of limited length L. Studied body is under the influence of a heat flow q from the surface over the entire cross-sectional area of the left end, and heat exchange with the environment occurs on the cross-sectional area of the right end. The rod is thermally insulated along the side surface. The authors consider two cases: the first is the heat flow with intensity q can be set on the area of a small circle with radius r <R, the second is the heat flow can be set on its part, that is, on the area . During the study, the authors showed that during the thermomechanical process, the strength of each section of the load-bearing structural elements is significantly influenced by the temperature distribution field. The influence of high temperature on the morphology of heat-resistant alloys is also shown. This leads to the fact that in some parts of the structural elements the temperature will be acceptable, and in some — critical. As a result, rapid wear of structural elements and loss of their physical qualities occur. Therefore, mathematical modeling of temperature distribution field for a body of various configurations is an urgent problem. The article presents a method for constructing a mathematical model and a corresponding computational algorithm that allows solving a class of problems to determine the regularities of the temperature distribution field in the elements of rod-shaped structures. To do this, the authors used the energy-variation principle in combination with the finite element method.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3